Weird Math Art logo

Weird Math Art

Mathematically unique digital art, created in Wales.

Explore Learn Shop

Iterated Function Systems

Built by randomly generated mathematical objects, these designs are truly unique.

\( \begin{pmatrix}x_{n+1} \\y_{n+1} \end{pmatrix} = \begin{pmatrix}a & b\\c & d\end{pmatrix}\begin{pmatrix}x_n \\y_n \end{pmatrix} + \begin{pmatrix}e \\f \end{pmatrix} \)

Learn more

Random coeffcients

Allowing the coefficients \( \{a,\ldots,f\} \) to vary randomly according to some constraints results in unique patterns.

IFS Series A #0001

IFS Series A #0002

IFS Series A #0005

IFS Series A #0011

IFS Series A #0012

IFS Series A #0015

Selected coefficients

Carefully selecting the coefficients can result in a variety of shapes.

IFS Barnsley Fern

IFS Dragon

IFS Coral

IFS Pentadendrite

IFS Pentigree

IFS Pentadendrite Chain

Quadratic Attractors

This system of equations can result in beautiful patterns if the coefficients are constrained in the right way.

\( \textbf{x}_{n+1} = F(a,\textbf{x}_n,\textbf{x}_n^2) \)

Learn more

Random coeffcients

Chaotic motion arises when the coefficients \( \textbf{a} \) vary, keeping the Lyapunov exponents near a certain value.

Quadratic Series A #0001

Quadratic Series A #0004

Quadratic Series A #0005

Quadratic Series A #0008

Quadratic Series A #0011

Quadratic Series A #0018

Differential attractors

Chaotic motion attracting to a pattern, similar but always different.

Learn more

Lorenz

First discovered by Konrad Lorenz, the solution to this set of equations forms a unique pattern.

\( \begin{align*} \frac{dx}{dt} &= \sigma (y-x) \\ \frac{dy}{dt} &= x (\rho - z) - y \\ \frac{dz}{dt} &= xy - \beta z \end{align*} \)

Monochrome

Color

Rossler

\( \begin{align*} \frac{dx}{dt} &= -(y+z) \\ \frac{dy}{dt} &= x + ay \\ \frac{dz}{dt} &= b + z(x-c) \end{align*} \)

Monochrome

Color

Thomas

\( \begin{align*} \frac{dx}{dt} &= \sin(y) - bx \\ \frac{dy}{dt} &= \sin(z) - by \\ \frac{dz}{dt} &= \sin(x) - bz \end{align*} \)

Monochrome

Color

Aizawa

\( \begin{align*} \frac{dx}{dt} &= (z-b)x - dy \\ \frac{dy}{dt} &= dx + (z-b)y \\ \frac{dz}{dt} &= c + az - z^3/3 - (x^2+y^2)(1+ez)+fzx^3 \end{align*} \)

Monochrome

Color

Dadras

\( \begin{align*} \frac{dx}{dt} &= y-ax+byz \\ \frac{dy}{dt} &= cy-xz+z \\ \frac{dz}{dt} &= dxy-ez \end{align*} \)

Monochrome

Color

Halvorsen

\( \begin{align*} \frac{dx}{dt} &= -ax -4(y+z) -y^2 \\ \frac{dy}{dt} &= -ay -4(z+x) -z^2 \\ \frac{dz}{dt} &= -az -4(x+y) -x^2 \end{align*} \)

Monochrome

Color

Rabinovich-Fabrikant

\( \begin{align*} \frac{dx}{dt} &= y(z-1+x^2)+\gamma x \\ \frac{dy}{dt} &= x(3z+1-x^2)+\gamma y \\ \frac{dz}{dt} &= -2z(\alpha+xy) \end{align*} \)

Monochrome

Color

Sprott

\( \begin{align*} \frac{dx}{dt} &= y+axy+xz \\ \frac{dy}{dt} &= 1-bx^2+yz \\ \frac{dz}{dt} &= x - x^2 - y^2 \end{align*} \)

Monochrome

Color

Four-wing

\( \begin{align*} \frac{dx}{dt} &= ax+yz \\ \frac{dy}{dt} &= bx+cy-xz \\ \frac{dz}{dt} &= -z-xy \end{align*} \)

Monochrome

Color

Random Walks

Choosing a random direction from North, South, East and West at every point can create beautiful patterns.

\( \textbf{(x,y)}_{n+1} = \textbf{(x,y)}_n + \{N,S,E,W\} \)

Learn more

Unconstrained motion

Random Walk Series A #0001

Random Walk Series A #0003

Random Walk Series A #0007

Random Walk Series A #0011

Random Walk Series A #0015

Random Walk Series A #0019